Stochastic Adversarial Video Prediction
نویسندگان
چکیده
Being able to predict what may happen in the future requires an in-depth understanding of the physical and causal rules that govern the world. A model that is able to do so has a number of appealing applications, from robotic planning to representation learning. However, learning to predict raw future observations, such as frames in a video, is exceedingly challenging—the ambiguous nature of the problem can cause a naively designed model to average together possible futures into a single, blurry prediction. Recently, this has been addressed by two distinct approaches: (a) latent variational variable models that explicitly model underlying stochasticity and (b) adversarially-trained models that aim to produce naturalistic images. However, a standard latent variable model can struggle to produce realistic results, and a standard adversariallytrained model underutilizes latent variables and fails to produce diverse predictions. We show that these distinct methods are in fact complementary. Combining the two produces predictions that look more realistic to human raters and better cover the range of possible futures. Our method outperforms prior and concurrent work in these aspects.
منابع مشابه
Stabilizing Adversarial Nets with Prediction Methods
Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...
متن کاملStabilizing Adversarial Nets With Prediction Methods
Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...
متن کاملStabilizing Adversarial Nets with Prediction Methods
Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when co...
متن کاملBregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction
Adversarial machines, where a learner competes against an adversary, have regained much recent interest in machine learning. They are naturally in the form of saddle-point optimization, often with separable structure but sometimes also with unmanageably large dimension. In this work we show that adversarial prediction under multivariate losses can be solved much faster than they used to be. We ...
متن کاملEnforceable Quality of Service Guarantees for Bursty Traffic Streams
Providing statistical quality-of-service guarantees introduces the conflicting requirements for both deterministic trafic models to isolate and police users and statistical multiplexing to ejiciently utilize and share network resources. We address this issue by introducing two schemes for providing statistical services to deterministically policed sources: (1) adversarial mode resource allocati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018